مقایسه ی مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیش بینی بقای بیماران مبتلا به سرطان معده

Authors

اکبر بیگلریان

akbar biglarian ابراهیم حاجی زاده

ebrahim hajizadeh انوشیروان کاظم نژاد

anoshirvan kazemnejad

abstract

سابقه و هدف: یکی از روش های آماری تحلیل داده های بقا، مدل رگرسیونی کاکس است که نیازمند پذیره هایی مانند متناسب بودن مخاطرات است. در چند دهه اخیر به کارگیری مدل شبکه عصبی مصنوعی برای پیش بینی داده های بقا، افزایش یافته است. این مطالعه به منظور پیش بینی بقای بیماران مبتلا به سرطان معده به کمک دو مدل رگرسیونی کاکس و شبکه عصبی مصنوعی انجام شده است. مواد و روش ها: طی سال های 1381 لغایت 1385، تعداد 436 بیمار مراجعه کننده با تشخیص قطعی سرطان معده که در بخش گوارش بیمارستان طالقانی تحت عمل جراحی قرار گرفتند به صورت هم گروه تاریخی مطالعه شدند. داده ها به طور تصادفی به دو گروه آموزشی و آزمایشی (اعتبارسنجی) تقسیم شدند. برای تحلیل داده ها از روش کاپلان-مایر، مدل مخاطرات متناسب کاکس و یک مدل شبکه ی عصبی مصنوعی سه لایه استفاده شد. برای مقایسه ی پیش بینی های دو مدل، از سطح زیر منحنی مشخصه عمل کرد و صحت کلاس بندی استفاده شد. یافته ها: صحت پیش بینی مدل شبکه عصبی برابر 51/81 درصد و مدل رگرسیونی کاکس برابر 60/72 درصد گردید. سطح زیر منحنی مشخصه عمل کرد برای مدل شبکه ی عصبی و رگرسیون کاکس به ترتیب برابر 6/82 درصد و 4/75 درصد به دست آمد. نتیجه گیری: مدل شبکه ی عصبی مصنوعی نسبت به مدل رگرسیون کاکس پیش بینی های بهتری نتیجه داد. لذا به کارگیری مدل شبکه عصبی مصنوعی در زمینه پیش بینی بقا پیشنهاد می شود. این امر در تحقیقات مرتبط با حوزه ی سلامت و به خصوص در تخصیص منابع درمانی لازم برای افرادی که پرمخاطره پیش بینی می شوند با اهمیت است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه‌ی مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیش‌بینی بقای بیماران مبتلا به سرطان معده

سابقه و هدف: یکی از روش‌های آماری تحلیل داده‌های بقا، مدل رگرسیونی کاکس است که نیازمند پذیره‌هایی مانند متناسب بودن مخاطرات است. در چند دهه اخیر به‌کارگیری مدل شبکه عصبی مصنوعی برای پیش‌بینی داده‌های بقا، افزایش یافته است. این مطالعه به منظور پیش‌بینی بقای بیماران مبتلا به سرطان معده به کمک دو مدل رگرسیونی کاکس و شبکه عصبی مصنوعی انجام شده است. مواد و روش‌ها: طی سال‌های 1381 لغایت 1385، تعداد ...

full text

مقایسه مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیش بینی بقای بیماران مبتلا به سرطان پستان

مقدمه: امروزه انواع سرطان یکی از مهم ترین عوامل مرگ و میر در دنیا و سرطان پستان از شایع ترین آن ها در زنان میان سال می باشد. میزان بقای پس از تشخیص و درمان در این بیماران یکی از شاخص های مهم در کنترل بیماری است. در این مطالعه دو مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش بینی بقای بیماران سرطان پستان با یکدیگر مقایسه شده اند. مواد و روش ها: داده های این پژوهش که از نوع مطالعات بقا است، از پرون...

full text

مقایسه مدل شبکه عصبی مصنوعی و رگرسیون پارامتری در پیش‌بینی بقای بیماران مبتلا به سرطان معده

Background & Objective: Using parametric models is common approach in survival analysis. In the recent years, artificial neural network (ANN) models have increasingly used in survival prediction. The aim of this study was to predict of survival rate of patients with gastric cancer by using a parametric regression and ANN models and compare these methods. Methods: We used the data of 436 gast...

full text

مقایسه مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیش بینی بقای بیماران مبتلا به سرطان پستان

مقدمه: امروزه انواع سرطان یکی از مهم ترین عوامل مرگ و میر در دنیا و سرطان پستان از شایع ترین آن ها در زنان میان سال می باشد. میزان بقای پس از تشخیص و درمان در این بیماران یکی از شاخص های مهم در کنترل بیماری است. در این مطالعه دو مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش بینی بقای بیماران سرطان پستان با یکدیگر مقایسه شده اند. مواد و روش ها: داده های این پژوهش که از نوع مطالعات بقا است، از پروند...

full text

مقایسه رگرسیون کاکس و مدل های پارامتریک در تحلیل بقای بیماران مبتلا به سرطان معده

Background & Objectives: Although Cox regression is commonly used to detect relationships between patient survival and demographic/clinical variables, there are situations where parametric models can yield more accurate results. The objective of this study was to compare two survival regression methods, namely Cox regression and parametric models, in patients with gastric carcinoma registered a...

full text

مقایسه مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش بینی بقای بیماران لوسمی حاد

چکید ه   سابقه و هدف   مدل رگرسیون کاکس، یکی از روش‏های رایج تحلیل داده‏های بقا می‏باشد که قبل از به ‏کارگیری آن لازم است فرض متناسب بودن خطرات برقرار باشد. اخیراً مدل‏های شبکه عصبی بدون نیاز به فرض خاص، جایگزینی مناسب در پیش‏بینی بقا می‏باشند. هدف از این مطالعه، مقایسه‏ توانایی مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش‏بینی بقای بیماران لوسمی حاد بود.   مواد و روش ها   در یک مطالعه گذشته‏نگر، ...

full text

My Resources

Save resource for easier access later


Journal title:
کومش

جلد ۱۱، شماره ۳، صفحات ۲۱۵-۲۲۰

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023